Experiment 4: Charge to mass ratio (e/m) of the electron # 实验4:电子的电荷质量比(e/m)

Nate Saffold

nas2173@columbia.edu Office Hour: Monday, 5:30PM-6:30PM @ Pupin 1216

INTRO TO EXPERIMENTAL PHYS-LAB 1494/2699 # 实验物理导论实验室 1494/2699

Introduction # 介绍

Why measure e/m?e / m ? # 为什么测量 e/me / m ?

What is matter? # 什么是物质?

-What is matter really made of?

-物质究竟由什么组成?

Consequences # 后果

Quanta (electrons) enclosed in a continuous positive distribution

量子电子)被包含在连续的正电荷分布

Consequences # 后果

Quanta (electrons) enclosed in a continuous positive distribution

量子电子)被包含在连续的正电荷分布

We're not done yet! # 我们还没完成!

We're not done yet! # 我们还没完成!

We're not done yet! # 我们还没完成!

Single loop magnetic field # 单环磁场

dB=μ04πId×r^r2B=μ04πId×r^r2\begin{gathered} d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} \\ \Downarrow \\ \vec{B}=\frac{\mu_{0}}{4 \pi} I \oint \frac{d \vec{\ell} \times \hat{r}}{r^{2}} \end{gathered}

dB=μ04πId×r^r2B=μ04πId×r^r2\begin{gathered} d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} \\ \Downarrow \\ \vec{B}=\frac{\mu_{0}}{4 \pi} I \oint \frac{d \vec{\ell} \times \hat{r}}{r^{2}} \end{gathered}

Single loop magnetic field # 单环磁场

dB=μ04πId×r^r2B=μ04πId×r^r2\begin{gathered} d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} \\ \Downarrow \\ \vec{B}=\frac{\mu_{0}}{4 \pi} I \oint \frac{d \vec{\ell} \times \hat{r}}{r^{2}} \end{gathered}

dB=μ04πId×r^r2B=μ04πId×r^r2\begin{gathered} d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} \\ \Downarrow \\ \vec{B}=\frac{\mu_{0}}{4 \pi} I \oint \frac{d \vec{\ell} \times \hat{r}}{r^{2}} \end{gathered}

Single loop magnetic field # 单环磁场

dB=μ04πId×r^r2 Line integral  over the wire B=μ04πId×r^r2\begin{gathered} d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} \quad \begin{array}{l} \text { Line integral } \\ \text { over the wire } \end{array} \\ \forall \vec{B}=\frac{\mu_{0}}{4 \pi} I \oint \frac{d \vec{\ell} \times \hat{r}}{r^{2}} \end{gathered}

dB=μ04πId×r^r2 Line integral  over the wire B=μ04πId×r^r2\begin{gathered} d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} \quad \begin{array}{l} \text { Line integral } \\ \text { over the wire } \end{array} \\ \forall \vec{B}=\frac{\mu_{0}}{4 \pi} I \oint \frac{d \vec{\ell} \times \hat{r}}{r^{2}} \end{gathered}

Circular motion of charge in B field # 带电粒子在B场中的圆周运动

F=qvBF=q v B

qvB=mv2rqm=vrBq v B=m \frac{v^{2}}{r} \quad \Rightarrow \quad \frac{q}{m}=\frac{v}{r B}

F=qvBF=q v B

qvB=mv2rqm=vrBq v B=m \frac{v^{2}}{r} \quad \Rightarrow \quad \frac{q}{m}=\frac{v}{r B}

Circular motion of charge in B field # 带电粒子在B场中的圆周运动

qV=12mv2qm=v22Vq V=\frac{1}{2} m v^{2} \quad \Rightarrow \quad \frac{q}{m}=\frac{v^{2}}{2 V}

qV=12mv2qm=v22Vq V=\frac{1}{2} m v^{2} \quad \Rightarrow \quad \frac{q}{m}=\frac{v^{2}}{2 V}

The Experiment # 实验

Main goals # 主要目标

Apparatus # 装置

Helmholtz coils (uniform magnetic field) # 亥姆霍兹线圈(均匀磁场)

Helmholtz coils (uniform magnetic field) # 亥姆霍兹线圈(均匀磁场)

BI=μ04π2πR2NI(R2+(R/2)2)3/2CI\begin{aligned} B_{I} & =\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2} N I}{\left(R^{2}+(R / 2)^{2}\right)^{3 / 2}} \\ & \equiv C I \end{aligned}

This represents magnetic field at center of experimental apparatus. (Location where cathode ray tube will sit)

BI=μ04π2πR2NI(R2+(R/2)2)3/2CI\begin{aligned} B_{I} & =\frac{\mu_{0}}{4 \pi} \frac{2 \pi R^{2} N I}{\left(R^{2}+(R / 2)^{2}\right)^{3 / 2}} \\ & \equiv C I \end{aligned}

这代表实验装置中心处的磁场。(阴极射线管将放置的位置

How to manage the magnetic field # 如何管理磁场

Preliminary alignment # 初步对准

Aligning to environment magnetic field # 与环境磁场对准

Aligning to environment magnetic field # 与环境磁场对准

Bnet=BIBEB_{\mathrm{net}}=B_{I}-B_{E}

Aligning to environment field # 与环境磁场对准

Aligning to environment field # 与环境磁场对准

Aligning to environment field # 与环境磁场对准

Aligning to environment field: tips # 与环境磁场对准:提示

Aligning to environment field: tips # 与环境磁场对准:提示

Rotated to align with the vertical component of BEB_{E}

旋转以与 BEB_{E} 的垂直分量对齐

Preliminary measure of BEB_{E} # 初步测量 BEB_{E}

Adjusting voltage on heated filament # 调节加热灯丝上的电压

Voltmeter - measure voltage potential on the filament that ejects the electrons

Voltage adjust knob

Filament potential reversal

电压表 - 测量喷射电子灯丝上的电压电位

电压调节旋钮

灯丝电位反转

Measuring the Ambient field # 测量环境磁场

Measuring e/m # 测量 e/m

Measuring circular orbits # 测量圆形轨道

Measuring circular orbits # 测量圆形轨道

Measuring circular orbits # 测量圆形轨道

Analysis # 分析

Linearize the data by plotting / vs. 1/r

I=(1C2Ve/m)1r+(BEC)I=\left(\frac{1}{C} \sqrt{\frac{2 V}{e / m}}\right) \frac{1}{r}+\left(\frac{B_{E}}{C}\right)

通过绘制 / vs. 1/r 线性化数据

I=(1C2Ve/m)1r+(BEC)I=\left(\frac{1}{C} \sqrt{\frac{2 V}{e / m}}\right) \frac{1}{r}+\left(\frac{B_{E}}{C}\right)

Final tips # 最终提示